The Method of Trust and Reputation Systems Based on Link Prediction and Clustering
نویسندگان
چکیده
Online environments offer a major advantage that data can be accessed freely. At the same time however, they present us with an issue of trust: how much any data from online sites can be trusted. Trust and Reputation Systems (TRS), developed to address this issue of trust on network, quantify reliability in terms of semantics and derive a trustnetwork from a targeted online data. The performance of TRS is often hindered despite the promises because the number of links formed in the ideal scenario frequently is not reached, suffering from the problems of cold-start and sparsity. In this paper, we propose a method in which Link Prediction(LP) and Clustering are applied to TRS so that these two problems are adequately addressed. We evaluate our proposed method with a recommendation system we constructed. Our experiment results show that our method positively contributes to the performance of a recommendation system and help control the problems of cold-start and
منابع مشابه
Merging Similarity and Trust Based Social Networks to Enhance the Accuracy of Trust-Aware Recommender Systems
In recent years, collaborative filtering (CF) methods are important and widely accepted techniques are available for recommender systems. One of these techniques is user based that produces useful recommendations based on the similarity by the ratings of likeminded users. However, these systems suffer from several inherent shortcomings such as data sparsity and cold start problems. With the dev...
متن کاملLink Prediction using Network Embedding based on Global Similarity
Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...
متن کاملPrediction of user's trustworthiness in web-based social networks via text mining
In Social networks, users need a proper estimation of trust in others to be able to initialize reliable relationships. Some trust evaluation mechanisms have been offered, which use direct ratings to calculate or propagate trust values. However, in some web-based social networks where users only have binary relationships, there is no direct rating available. Therefore, a new method is required t...
متن کاملDisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems
The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...
متن کاملA Link Prediction Method Based on Learning Automata in Social Networks
Nowadays, online social networks are considered as one of the most important emerging phenomena of human societies. In these networks, prediction of link by relying on the knowledge existing of the interaction between network actors provides an estimation of the probability of creation of a new relationship in future. A wide range of applications can be found for link prediction such as electro...
متن کامل